A Novel Approach for Resource Estimation of Highly Skewed Gold Using Machine Learning Algorithms

نویسندگان

چکیده

With the complicated geology of vein deposits, their irregular and extremely skewed grade distribution, confined nature gold, there is a propensity to overestimate or underestimate ore grade. As result, numerous estimation approaches for mineral resources have been developed. It was investigated in this study by using five machine learning algorithms estimate highly gold data vein-type at Quartz Ridge region, including Gaussian Process Regression (GPR), Support Vector (SVR), Decision Tree Ensemble (DTE), Fully Connected Neural Network (FCNN), K-Nearest Neighbors (K-NN). The accuracy MLA compared that geostatistical approaches, such as ordinary indicator kriging. Significant improvements were made during preprocessing splitting, ensuring estimated accurately. preprocessed with two normalization methods (z-score logarithmic) enhance network training performance minimize substantial differences dataset’s variable ranges on predictions. samples divided into equal subsets an integrated segmentation approach based Marine Predators Algorithm (MPA). ranking shows GPR logarithmic most efficient method estimating grade, far outperforming kriging techniques. In study, key producing successful more than just technique. also has do how are processed split.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of linear and non-linear estimation methods in highly-skewed gold distribution

The purpose of this work is to compare the linear and non-linear kriging methods in the mineral resource estimation of the Qolqoleh gold deposit in Saqqez, NW Iran. Considering the fact that the gold distribution is positively skewed and has a significant difference with a normal curve, a geostatistical estimation is complicated in these cases. Linear kriging, as a resource estimation method, c...

متن کامل

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

A Novel Algorithm for Rotor Speed Estimation of DFIGs Using Machine Active Power based MRAS Observer

This paper presents a new algorithm based on Model Reference Adaptive System (MRAS) and its stability analysis for sensorless control of Doubly-Fed Induction Generators (DFIGs). The reference and adjustable models of the suggested observer are based on the active power of the machine. A hysteresis block is used in the structure of the adaptation mechanism, and the stability analysis is performe...

متن کامل

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Minerals

سال: 2022

ISSN: ['2075-163X']

DOI: https://doi.org/10.3390/min12070900